Chapter 4: Acceleration
Acceleration Change in velocity in a unit of time interval
a = v/t = (v2 - v1)/(t2 - t1)
Acceleration = Slope of velocity-time graph
Constant Acceleration
a = v/t = (v2 - v1)/(t2 - t1)
v2 - v1 = a(t2 - t1)
v2 = v1 + a(t2 - t1)
If t1 = 0, then:
v2 = v1 + at ------- Use to determine velocity as a function of time.
Recall:
vav = (d2 - d1)/(t2 - t1)
d2 - d1 = vav(t2 - t1)
If t1 = 0, then:
d2 - d1 = vavt
d2 = d1 + vavt
vav = ½(v1 + v2)
d2 = d1 + ½(v1 + v2)t ------ Use to determine position as a function of time.
½(v2 + v1) = ½(v1 + (v1 + at)) = v1 + ½at
d2 = d1 + ½(v1 + v2)t = d1 + (v1 + ½at)t
d2 = d1 + v1t + ½at2 -------Use to determine position as a function of time.
Recall:
v2 = v1 + at or t = (v2 - v1)/a
and
d2 = d1 + ½(v1 + v2)t
Therefore:
d2 = d1 + ½(v1 + v2)(v2 - v1)/a
d2 = d1 + (v22 - v12)/2a
Therefore:
v22 = v12 + 2a(d2 - d1) ------- Use to determine velocity as a function of position
Summary of Constant-Acceleration Motion Equations
v2 = v1 + at
vav = ½(v1 + v2)
d2 = d1 + ½(v1 + v2)t
d2 = d1 + v1t + ½at2
v22 = v12 + 2a(d2 - d1)
Freely Falling Objects
a = g = 9.81 m/s2