Home

Syllabus | Grading Procedures | Class Rules | Lab Reports Rubric | Rules for Significant Figures | Rules of Problem Solving | Physics SOL's | Chapter I | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Chapter 7 | Chapter 8 | Chapter 9 | Chapter 10 | Chapter 11 | Chapter 12 | Chapter 13
Chapter 7
Physics

Motion in Two Dimensions

 

Chapter 7 Motion in Two Dimensions

                       

 

7.1 Projectile Motion

 

The path of a projectile is its trajectory.

 

 

 

 

Independence of Motion in Two Dimensions

 

The horizontal and vertical velocities of a projectile are independent.

Time is the only common factor.

 

 

 

 

 

Horizontal Component of Projectile Motion

             

            dx = vxt

 

 

 

 

 

Vertical Component of Projectile Motion

 

            dy = vy1t + ˝gt2

 

            vy2 = vy1 + gt

 

            vy22 = vy12 + 2gdy

 

 

 

 

 

Objects Launched Horizontally

 

The horizontal Velocity is constant.

The vertical velocity is constantly changing because of gravity.

 

 

 

 

 

Objects Launched at an Angle

 

The trajectory of a projectile is a parabola.

 

 

 

 

 

Problem Solving Strategy

 

Solve the horizontal and vertical components independently of each other.

 

Always check a problem to see if you answers are reasonable.

 

The velocity of a projectile can be resolved into horizontal and vertical components.

 

 

 

 

 

7.2 Periodic Motion

 

 

 

 

 

Circular Motion

 

Centripetal acceleration is always toward the center of a circle.

 

In circular motion, centripetal acceleration is at right angles to the instantaneous velocity.

 

            ac = v2/r

            Where:

                        a centripetal acceleration

                        v linear velocity, tangential to the circle.

                        r radius of the circle

 

 

 

            v = (2pr)/T

            where:

                        T period of one revolution

 

            a = (4p2r)T2

 

            Fc = mac = (mv2)/r = (4p2mr)/T2

            Where:

                        Fc centripetal force

m mass of object  

 

 

 

 

 

Changing Circular Motion: Torque

 

Torque is the product of the force and lever arm.

 

            T = F X l

 

 

 

 

Simple Harmonic Motion

 

In simple harmonic motion, the restoring force varies linearly with displacement

 

The period is the time required to complete a full complete cycle.

 

A pendulum making small swing undergoes simple harmonic motion

 

Period of a Pendulum:

 

            T = 2p(l/g)1/2

            Where:

                        l length of pendulum

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REACH OUT AND TOUCH ME!

Ronald K. Wilson

Central Senior High School

131 K-V Road

Victoria, VA  23947

Work Phone:  434-696-2137

Home Phone:  434-372-3997

      7:00 - 9:00 PM

email:  wilsonrk@hotmail.com